Title: |
Multi-scale modeling of complex flows at extreme computational scales |
|
Speaker: |
Dr. Spencer Bryngelson |
|
Affiliation: |
Computational Science and Engineering, Georgia Tech |
|
When: |
Wednesday, September 6, 2023 at 1:00:00 PM |
|
Where: |
MRDC Building, Room 4211 |
|
Host: |
Alexander Alexeev | |
Abstract Many fluid flows display at a wide range of space and time scales. Turbulent and multiphase flows can include small eddies or particles, but likewise large advected features. This challenge makes some degree of multi-scale modeling or homogenization necessary. Such models are restricted, though: they should be numerically accurate, physically consistent, computationally expedient, and more. I present two tools crafted for this purpose. First, the fast macroscopic forcing method (Fast MFM), which is based on an elliptic pruning procedure that localizes solution operators and sparse matrix-vector sampling. We recover eddy-diffusivity operators with a convergence that beats the best spectral approximation (from the SVD), attenuating the cost of, for example, targeted RANS closures. I also present a moment-based method for closing multiphase flow equations. Buttressed by a recurrent neural network, it is numerically stable and achieves state-of-the-art accuracy. I close with a discussion of conducting these simulations near exascale. Our simulations scale ideally on the entirety of ORNL Summit's GPUs, though the HPC landscape continues to shift. |
||
Biography Spencer Bryngelson joined Georgia Tech in 2021 as a tenure-track assistant professor in the College of Computing. Previously, he was a senior postdoctoral researcher at Caltech (with Tim Colonius). He has been a visiting researcher at MIT (with Themis Sapsis) and a postdoctoral researcher at the Center for Exascale Simulation of Plasma-Coupled Combustion (with Dan Bodony). He received his Ph.D. and M.S. in Theoretical and Applied Mechanics from the University of Illinois at Urbana-Champaign in 2017 and 2015, working with Jonathan Freund. In 2013, he received B.S. degrees in both Mechanical Engineering and Mathematics from the University of Michigan-Dearborn. Spencer won a young investigator award from Oak Ridge National Lab, the UIUC Outstanding Dissertation Award, and the Hassan Aref Award for research in fluid dynamics. |