SUBJECT: Ph.D. Dissertation Defense
   
BY: Yitao Liu
   
TIME: Friday, August 19, 2016, 1:00 p.m.
   
PLACE: MRDC Building, 4211
   
TITLE: Game Theoretic Optimization of High Variety Assembly System Design
   
COMMITTEE: Dr. Jianxin (Roger) Jiao, Chair (Mechanical Engineering)
Dr. Seung-Kyum Choi (Mechanical Engineering)
Dr. Yan Wang (Mechanical Engineering)
Dr. Katherine Fu (Mechanical Engineering)
Dr. Manpreet S. Hora (Scheller College of Business)
 

SUMMARY

Continuous growing demands of customized products, increasing competition among manufacturing industries and increasing labor cost are demanding mass customization to be realized in all spectrum of industry. However, mass customization has largely not lived up to its promise. The assembly system, being identified as the breaking point to enable mass customization, also bring challenges when dealing with high variety products which is typical situation in mass customization. The topic of this dissertation is identified as game theoretic optimization of high variety assembly system design. It suggests itself as a key enabler of mass customization paradigm, which should allow companies to supply high variety product for today’s market that demands customization without too much tradeoff in cost, quality or distribution. The research problem is formulated as to provide a systematical approach to design multi-stage, multi-product high variety assembly system under multiple pre and post-conditions and constraints. The proposed work is geared towards a game theory based solution to solve complex engineering system design problem, and using the high variety assembly system design as an example. The dissertation reveals the fundamental issues underlying high variety assembly system design and decision making in complex engineered systems. In order to tackle the fundamental issues, a technical framework of game theoretic optimization of high variety assembly system design is proposed. Accordingly, mathematical and computational models are developed within the framework to support 1) variety propagation from product to assembly process, 2) assembly system layout design, 3) assembly process design and resource allocation, and 4) assembly process planning.