SUBJECT: Ph.D. Dissertation Defense
   
BY: Shan Huang
   
TIME: Wednesday, May 4, 2011, 3:00 p.m.
   
PLACE: MRDC Building, 2405
   
TITLE: Nano-chemo-mechanics of Advanced Materials for Hydrogen Storage and Lithium Battery Applications
   
COMMITTEE: Dr. Ting Zhu, Chair (ME)
Dr. Olivier Pierron (ME)
Dr. Ken Gall (ME/MSE)
Dr. David L. McDowell (ME/MSE)
Dr. Seung Soon Jang (MSE)
 

SUMMARY

Chemo-mechanics studies the material behavior and phenomena at the interface of mechanics and chemistry. Material failures due to coupled chemo-mechanical effects are serious roadblocks in the development of renewable energy technologies. Among the sources of renewable energies for the mass market, hydrogen and lithium-ion battery are promising candidates due to their high efficiency and easiness of conversion into other types of energy. However, hydrogen will degrade material mechanical properties and lithium insertion can cause electrode failures in battery owing to their high nobilities and strong chemo-mechanical coupling effects. These problems seriously prevent the large-scale applications of these renewable energy sources. In this thesis, we performed an atomistic study of the chemical-mechanical failures at the nanoscale for understanding the hydrogen embrittlement of grain boundary engineered metals and the lithium insertion induced fracture in alloy electrodes for lithium-ion batteries. Silicon is one of the most promising anode materials for Li-ion batteries because of the highest known theoretical charge capacity. However, Si anodes often suffer from pulverization and capacity fading. This is caused by the large volume changes of Si (~300%) upon Li insertion/extraction close to the theoretical charging/discharging limit. In particular, large incompatible deformation between areas of different Li contents tends to initiate fracture, leading to electro-chemical-mechanical failures of Si electrodes. In order to understand the chemo-mechanical mechanisms, we begin with the study of basic fracture modes in pure silicon, and then study the diffusion induced deformation and fracture in lithiated Si. Results have implications for increasing battery capacity and reliability. Hydrogen in metallic containment systems such as high-pressure vessels and pipelines causes the degradation of their mechanical properties that can result in sudden catastrophic fracture. A wide range of hydrogen embrittlement phenomena was attributed to the loss of cohesion of interfaces (between grains, inclusion and matrix, or phases) due to interstitially dissolved hydrogen. Our modeling and simulation of hydrogen embrittlement will address the question of why susceptibility to hydrogen embrittlement in metallic materials can be markedly reduced by grain boundary engineering. Implications of our results for efficient hydrogen storage and transport at high pressures will be discussed.