SUBJECT: Ph.D. Dissertation Defense
   
BY: Daniel Brzozowski
   
TIME: Monday, September 19, 2011, 9:00 a.m.
   
PLACE: Love Building, 210
   
TITLE: Dynamic Control of Aerodynamic Forces on a Moving Platform Using Active Flow Control
   
COMMITTEE: Dr. Ari Glezer, Chair (ME)
Dr. Marc Smith (ME)
Dr. Bojan Vukasinovic (ME)
Dr. Anthony Calise (AE)
Dr. Anthony Leonard (Caltech AE)
 

SUMMARY

The unsteady interaction between trailing edge aerodynamic flow control and airfoil motion in pitch and plunge is investigated in wind tunnel experiments using a two degree-of-freedom traverse which enables application of time-dependent external torque and forces by servo motors. The global aerodynamic forces and moments are regulated by controlling vorticity generation and accumulation near the trailing edge of the airfoil using hybrid synthetic jet actuators. The dynamic coupling between the actuation and the time-dependent flow field is characterized using simultaneous force and particle image velocimetry (PIV) measurements that are taken phase-locked to the commanded actuation waveform. The effect of the unsteady motion on the model-embedded flow control is assessed in both trajectory tracking and disturbance rejection maneuvers. The time-varying aerodynamic lift and pitching moment are estimated from a PIV wake survey using a reduced order model based on classical unsteady aerodynamic theory. These measurements suggest that the entire flow over the airfoil readjusts within 2-3 convective timescales, which is about two orders of magnitude shorter than the characteristic time associated with the controlled maneuver of the wind tunnel model. This illustrates that flow-control actuation can be typically effected on time scales that are commensurate with the flow's convective time scale, and that the maneuver response is primarily limited by the inertia of the platform.