SUBJECT: Ph.D. Proposal Presentation
   
BY: Thomas Easley
   
TIME: Thursday, September 1, 2016, 3:00 p.m.
   
PLACE: Technology Enterprise Park (TEP), 104
   
TITLE: QUANTITATIVE ASSESSMENT OF THE EFFECTS OF MITRAL VALVE ANNULAR DYNAMICS AND THE RISKS OF MITRAL VALVE-IN-RING PROCEDURES
   
COMMITTEE: Ajit P. Yoganathan, Ph.D., Chair (BME)
Cryus K. Aidun, Ph.D. (ME)
Wei Sun, Ph.D. (BME)
F. Levent Degertekin, Ph.D. (ME)
Joseph H. Gorman, M.D. (Surgery, University of Pennsylvania)
Vinod H. Thourani, M.D. (Surgery, Emory University)
 

SUMMARY

Mitral valve (MV) repair with an annuloplasty ring (AR) is a well-established surgical therapy for MV regurgitation. For high-risk, inoperable patients with a failing mitral AR, there is currently no minimally invasive solution available. This need for a minimally invasive solution has led to the off-label use of transcatheter aortic valve (TAV) replacements in the failing mitral AR, termed valve-in-ring (VIR). As TAVs are not designed for this environment, their performance and risks in the MV position needs to be understood. Currently, there are no official surgical guidelines, and no quantitative engineering studies have been conducted. The first goal of this dissertation includes designing and performing in vitro experiments to evaluate and quantify risks of LVOT obstruction, embolization, and thrombosis in VIR procedures. In addition, there is a need to understand the effects of MV annular contraction on its leaflets. To satisfy this need, a secondary goal of this dissertation is to design and validate an MV in vitro model with a dynamically contracting annulus, and then compare leaflet strain between varying contractile states. These goals will provide a more in-depth quantitative assessment of the risks of VIR procedures, better inform VIR procedural guidelines, as well as provide further insight into MV biomechanics and advanced platforms for future MV in vitro studies.