SUBJECT: M.S. Thesis Presentation
BY: Fernando Reiter
TIME: Monday, April 25, 2011, 12:30 p.m.
PLACE: Love Building, 210
TITLE: Carbon Based Nanomaterials as Transparent Conductive Electrodes
COMMITTEE: Dr. Samuel Graham, Chair (ME)
Dr. Kyriaki Kalaitzidou (ME)
Dr. Baratunde Cola (ME)


Optically transparent carbon based nanomaterials including graphene and carbon nanotubes(CNTs) are promising candidates as transparent conductive electrodes due to their high electrical conductivity coupled with high optical transparency, can be flexed several times with minimal deterioration in their electronic properties, and do not require costly high vacuum processing conditions. CNTs are easily solution processed through the use of surfactants sodium dodecyl sulfate(SDS) and sodium cholate(SC). Allowing CNTs to be deposited onto transparent substrates through vacuum filtration, ultrasonic spray coating, dip coating, spin coating, and inkjet printing. However, surfactants are electrically insulating, limit chemical doping, and increase optical absorption thereby decreasing overall performance of electrodes. Surfactants can be removed through nitric acid treatment and annealing in an inert environment (e.g. argon). In this thesis, the impact of surfactant removal on electrode performance was investigated. Nitric acid treatment has been shown to p-dope CNTs and remove the surfactant SDS. However, nitric acid p-doping is naturally dedoped with exposure to air, does not completely remove the surfactant SC, and has been shown to damage CNTs by creating defect sites. Annealing at temperatures up to 1000C is advantageous in that it removes insulating surfactants. However, annealing may also remove surface functional groups that dope CNTs. Therefore, there are competing effects when annealing CNT electrodes. The impacts on electrode performance were investigated through the use of conductive-tip atomic force microscopy, sheet resistance, and transmittance measurements. In this thesis, the potential of graphene CNT composite electrodes as high performing transparent electrodes was investigated. As-made and annealed graphene oxide CNT composites electrodes were studied. Finally, a chemical vapor deposition grown graphene CNT composite electrode was also studied.